COMPUTER SCIENCE TRIPOS Part II – 2022 – Paper 8

9 Optimising Compilers (tmj32)

A language \mathcal{L} has the following abstract syntax, where c ranges over integer constants, x ranges over a set of variables and \oplus ranges over binary operations:

 $e = c \mid x \mid \lambda x.e \mid e_1e_2 \mid \texttt{let} \ x = e_1 \ \texttt{in} \ e_2 \mid \texttt{if} \ e_1 \ \texttt{then} \ e_2 \ \texttt{else} \ e_3 \mid e_1 \oplus e_2$

Consider the following program P in \mathcal{L} :

let
$$x = 5$$
 in
let $f = \lambda x.2 * x$ in
if $x > 0$ then $f x$ else $f (0 - x)$

This question asks you to perform 0CFA on P.

- (a) Draw the program P as a tree and label its program points. [4 marks]
- (b) Give the space of flow values for P. [2 marks]
- (c) Each program point *i* in *P* has an associated flow variable α_i . Show the initial constraints on each α_i that are generated when performing 0CFA. [4 marks]
- (d) Show how the process of solving the constraints from part (c) leads to additional constraints being generated. [4 marks]
- (e) Show the final solution after solving all constraints from parts (c) and (d) and simplifying binary terms. [4 marks]
- (f) Explain whether your answer is a safe over- or under-approximation of the result of P and where the imprecision comes from. [2 marks]