COMPUTER SCIENCE TRIPOS Part II – 2022 – Paper 8

7 Information Theory (rkh23)

- (a) Show how to use Huffman coding to produce optimal *ternary* codewords for a symbol alphabet of size 9 with a uniform probability distribution across the input symbols. Explain how you know it is optimal.
 [3 marks]
- (b) A suffix code occurs when no codeword is a suffix of any other codeword. For example, 01 precludes 101. Show that an optimal suffix code exists for every probability distribution over the input symbols. [3 marks]
- (c) An alternative code assigns a codeword of exact length $\lceil \log_2(\frac{1}{P_i}) \rceil$ to symbol *i*, which occurs with probability P_i .
 - (i) Explain the significance of $\lceil \log_2(\frac{1}{P_i}) \rceil$ and the logic behind its use in this way. [2 marks]
 - (*ii*) Can this scheme always produce a prefix code? Justify your answer.

[2 marks]

- (*iii*) Compare this scheme to a Huffman code. [5 marks]
- (d) If all symbols input to a Huffman code occur with probability < p there can be no codeword of length 1. Find the upper bound for p. [5 marks]