COMPUTER SCIENCE TRIPOS Part IB - 2022 - Paper 6

4 Complexity Theory (ad260)

For the purpose of this question, a graph $G=(V, E)$ is a set V of vertices along with a set E of edges where each edge is a set of two distinct vertices. That is, we consider undirected graphs without self-loops or multiple edges.

Given two graphs $G=(V, E)$ and $H=(U, F)$, a homomorphism from G to H is a function $h: V \rightarrow U$ such that whenever $\left\{v_{1}, v_{2}\right\}$ is in $E,\left\{h\left(v_{1}\right), h\left(v_{2}\right)\right\}$ is in F. We write HOM for the decision problem consisting of all pairs of graphs (G, H) such that there is a homomorphism from G to H.

Recall that a graph $G=(V, E)$ is k-colourable (for a positive integer k) if there is a function $\chi: V \rightarrow\{1, \ldots, k\}$ such that whenever $\{u, v\}$ is in $E, \chi(u) \neq \chi(v)$.
(a) Explain why the decision problem HOM is in NP.
(b) Let K_{3} denote the graph with three vertices a, b, c and the three edges $\{a, b\},\{b, c\}$ and $\{a, c\}$. Show that for any graph G, there is a homomorphism from G to K_{3} if, and only if, G is 3-colourable.
[6 marks]
(c) What can you conclude from the above about the complexity of the problem HOM?
[5 marks]
(d) Let K_{2} denote the graph consisting of two vertices a and b and the single edge $\{a, b\}$. What is the complexity of the decision problem consisting of all graphs G for which there is a homomorphism from G to K_{2} ?
[5 marks]

