COMPUTER SCIENCE TRIPOS Part IA - 2022 - Paper 2

10 Discrete Mathematics (fms27)

All the formal languages associated with finite automata in this question are defined over the alphabet $\Sigma=\{0,1,2,3,4,5\}$. [Note: Ensure that any answer DFA you provide is actually a DFA.]
(a) Build a 4 -state DFA A_{0} to recognise the set of strings that start with 5 and have an even number of 0 s .
(b) Build a 6 -state DFA A_{1} to recognise the same language as A_{0}. Every state in A_{1} must be reachable by some string in Σ^{*}.
(c) Here is a 7 -state $\mathrm{NFA}^{\varepsilon} A_{2}$.

(i) Find strings $x, y, z \in \Sigma^{*}$ such that the following statement is true: " A_{2} accepts all and only the strings that start with x, contain an odd number of y and end with $z^{\prime \prime}$.
(ii) Build a DFA A_{3} with no more than seven states that recognises the same language as A_{2}. [Hint: Check whether the property in part $(c)(i)$ still holds for your A_{3}.]
(d) For each of the following four strings, state which of A_{0} and A_{2} recognise it. [Note: Spaces have been inserted for legibility but have no other significance.]
(i) 5234554321001412
(ii) 55555500503100412
(iii) 543040412
(iv) 5421

