COMPUTER SCIENCE TRIPOS Part IA – 2022 – Paper 2

10 Discrete Mathematics (fms27)

All the formal languages associated with finite automata in this question are defined over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5\}$. [*Note:* Ensure that any answer DFA you provide is actually a DFA.]

- (a) Build a 4-state DFA A_0 to recognise the set of strings that start with 5 and have an even number of 0s. [2 marks]
- (b) Build a 6-state DFA A_1 to recognise the same language as A_0 . Every state in A_1 must be reachable by some string in Σ^* . [5 marks]
- (c) Here is a 7-state NFA^{ε} A_2 .

- (i) Find strings $x, y, z \in \Sigma^*$ such that the following statement is true: " A_2 accepts all and only the strings that start with x, contain an odd number of y and end with z". [2 marks]
- (*ii*) Build a DFA A_3 with no more than seven states that recognises the same language as A_2 . [*Hint:* Check whether the property in part (c)(i) still holds for your A_3 .] [7 marks]
- (d) For each of the following four strings, state which of A_0 and A_2 recognise it. [Note: Spaces have been inserted for legibility but have no other significance.]
 - (i) 5234 5543 2100 1412
 - (ii) 5555 5500 5031 0041 2
 - (*iii*) 5430 4041 2
 - (iv) 5421

[4 marks]