COMPUTER SCIENCE TRIPOS Part II - 2021 - Paper 9

9 Information Theory (jgd1000)

(a) A long-term and self-replicating data storage system based on DNA sequences is being developed. Advantages include huge information density ($\sim 10^{19}$ bits $/ \mathrm{cm}^{3}$) and extreme persistence: dinosaur DNA can still be extracted from fossils. The letters A,C,G,T each occur with equal probability, independently, without sequence constraints. Consider sequences consisting of 100 such letters.

(i) How many sequences are possible, and with what probabilities? [2 marks]
(ii) Random variable X selects such a sequence. Calculate $H(X)$, the entropy of X, starting from Shannon's definition.
[2 marks]
(iii) Sequence replication may be corrupted such that the last two letters are reproduced randomly in the post-replication sequences, denoted Y. What is the conditional entropy $H(X \mid Y)$, and what is the mutual information $I(X ; Y)$ for this error-prone replication process?
[4 marks]
(b) Financial markets generate daily asset valuations like the time-series $f(t)$ in the left panel, reflecting the dynamics of greed and fear. But underlying such fluctuating indices there may exist meaningful trends, such as a business cycle (right panel). Write an auto-correlation integral that can extract the coherent quasi-periodic signal on the right from noisy valuations $f(t)$, and explain how computing the Fourier transform $F(\omega)$ of $f(t)$ makes it efficient. [5 marks]

(c) Brain tissue contains about 10^{5} neurones per mm^{3}, and each neurone has a single output axon whose length r (in dimensionless units) before terminating at synapses to other neurones has probability density distribution $p(r)=e^{-r}$.

(i) Define differential entropy h for continuous random variables in terms of general probability density distribution $p(x)$, and then calculate the value of h in bits for this axonal length distribution $p(r)=e^{-r}$. [5 marks]
(ii) If the axon's branching terminals make altogether about 1,000 synapses (connections) with different neurones within the axonal tree's $1 \mathrm{~mm}^{3}$ volume, uniformly distributed, roughly how many bits of entropy describe the uncertainty of whether a neurone gets such a connection? [2 marks]

