
12

COMPUTER SCIENCE TRIPOS Part II – 2021 – Paper 9

Optimising Compilers (tmj32)

The following excerpt from a program in C-style code is optimised with a compiler
using code-motion transformations. The function read() returns a signed integer
from the user.

l0: a = read();

l1: b = read();

l2: p = &a;

l3: q = &b;

l4: r = &p;

l5: if (read() > 0) {

l6: a = b + 5;

l7: } else {

l8: i = 0;

l9: while (i < 10) {

l10: c = b + 5;

l11: **r += *q;

l12: i += 1;

l13: }

l14: a += c;

l15: }

l16: print(a);

(a) Describe loop-invariant code motion (LICM) and which expresion(s) in the loop
above it should move. [2 marks]

(b) Describe a simple data-flow analysis and a way of using it to identify loop-
invariant expressions. Use this to analyse the code above. [5 marks]

(c) Explain whether all expressions described in Part (a) are found through the
analysis in Part (b). [2 marks]

(d) Describe an analysis that can aid in making LICM more precise in this example.
[3 marks]

(e) Apply the analysis from Part (d) to the code above and redo the analysis from
Part (b) to show which expressions described in Part (a) are now found.

[4 marks]

(f) Describe another code motion transformation that could be applied to the code
after LICM and show the final code after its application. [4 marks]

1

