COMPUTER SCIENCE TRIPOS Part II - 2021 - Paper 9

10 Machine Learning and Bayesian Inference (sbh11)

Consider the following Bayesian Network:

All random variables (RVs) are Boolean. For an RV R we denote $R=T$ by r and $R=F$ by \bar{r}. We have $\operatorname{Pr}(a)=0.1, \operatorname{Pr}(b)=0.2, \operatorname{Pr}(d \mid b)=0.7$ and $\operatorname{Pr}(d \mid \bar{b})=0.4$. For the remaining RVs we have

In this question you must use the Variable Elimination algorithm to compute $\operatorname{Pr}(A \mid \bar{e})$. You should begin with the factorisation

$$
\operatorname{Pr}(A \mid \bar{e})=\operatorname{Pr}(A) \sum_{B} \operatorname{Pr}(B) \sum_{C} \operatorname{Pr}(C \mid A, B) \sum_{D} \operatorname{Pr}(D \mid B) \operatorname{Pr}(\bar{e} \mid B, C, D) .
$$

You should express factors as tables of integers, leaving any necessary normalisation until the final step in Part (d).
(a) Define conditional independence of two RVs X and Y with respect to a third RV Z.
(b) Deduce the factor $F_{E, \bar{D}}(B, C)$ corresponding to the summation over D.
[8 marks]
(c) Deduce the factor $F_{E, \bar{D}, \bar{C}}(A, B)$ corresponding to the summation over C.
(d) Complete the computation to find the distribution $\operatorname{Pr}(A \mid \bar{e})$.

