
8

COMPUTER SCIENCE TRIPOS Part II – 2021 – Paper 8

Hoare Logic and Model Checking (jp622)

Consider commands C composed from assignments X := E (where X is a
program variable, and E is an arithmetic expression), heap dereference X := [E],
heap assignment [E1] := E2, the no-op skip, sequencing C1;C2, conditionals
if B then C1 else C2 (where B is a boolean expression), and loops while B do C.
null is 0. We write align(t, s) for the smallest multiple of s larger than t.
Let block(t, 0) = emp, block(t, n + 1) = (∃t′. t 7→ t′) ∗ block(t + 1, n).

(a) Explain why the following postcondition for an allocator that returns aligned
blocks is incorrect, and propose a fix.

{block(B,E −B) ∗ 1 ≤ S}
if align(B, 2S) + 2S < E
then (R := align(B, 2S);B := B + 2S) else R := 0{

block(B,E −B) ∗
(R 6= 0 =⇒ (block(R, 2S) ∗R = align(R, S)))

} [3 marks]

(b) With this specification, allocations cannot be chained, as in Calloc;Y := X;Calloc.
Explain why, and propose a fix. [2 marks]

(c) Strengthen the precondition just enough to guarantee the success of allocation
(so that R 6= 0 =⇒ is not needed anymore). [2 marks]

(d) Consider the following representation predicate for lists of free blocks of size 2S:

freelist(t, S) = (t = null ∗ emp) ∨

∃t′.

t = align(t, 2S) ∧t 7→ t′ ∗
block(t + 1, 2S − 1) ∗
freelist(t′, S)





Give a loop invariant, and precisely but informally explain why it is preserved,
for this “add the contents of a block into a free list” triple:

{B = align(B, 2S) ∗ block(B,E −B) ∗ 1 ≤ S ∗ L = null}
while B + 2S < E do(

[B] := L;L := B;B := B + 2S
)

{block(B,E −B) ∗ freelist(L, S)}

[7 marks]

(e) Give a loop invariant, and precisely but informally explain why it is preserved,
for this “coalesce blocks of a size S free list into a size S + 1 free list” triple:
{freelist(L1, S) ∗ L2 = null ∗D = 0}

while D = 0 do


if L1 = null then D := 1

else


X := [L1];
if X = null or X mod 2S+1 6= 0 then D := 1

else

Y := [X];
if X + 2S 6= Y then D := 1
else

(
[X] := L2;L2 := X

)





{freelist(L1, S) ∗ freelist(L2, S + 1)}

[6 marks]

1


