COMPUTER SCIENCE TRIPOS Part II - 2021 - Paper 8

1 Advanced Algorithms (tms41)

(a) Suppose you have a randomised approximation algorithm for a maximisation problem such that, for any $\epsilon>0$ and any problem instance of size n, the algorithm returns a solution with cost C such that

$$
\operatorname{Pr}\left[C \geq(1-1 / \epsilon) \cdot C^{*}\right] \geq 1 / n \cdot \exp (-1 / \epsilon)
$$

where C^{*} is the cost of the optimal solution. Can you use your algorithm to obtain a PTAS or FTPAS? Justify your answer.
(b) We consider the following optimisation problem. Given an undirected graph $G=(V, E)$ with non-negative edge weights $w: E \rightarrow \mathbb{R}^{+}$, we are looking for an assignment of vertex weights $x: V \rightarrow \mathbb{R}$ such that: (i) for every edge $\{u, v\} \in E$, $x(u)+x(v) \geq w(\{u, v\}),(i i) \sum_{v \in V} x(v)$ is as small as possible.
(i) Design a 2-approximation algorithm for this problem. Also analyse the running time and prove the upper bound on the approximation ratio.
Note: For full marks, your algorithm should run in at most $O\left(E^{2}\right)$ time.
Hint: One way to solve this question is to follow the approach used by the greedy approximation algorithm for the VERTEX-COVER problem.
(ii) Can this problem be solved exactly in polynomial-time? Either describe the algorithm (including a justification of its correctness and why it is polynomial time) or prove that the problem is hard via a suitable reduction.
[6 marks]

