COMPUTER SCIENCE TRIPOS Part IB 75\%, Part II 50\% - 2021 - Paper 7

5 Formal Models of Language (pjb48)

A linguist produces the grammar $G=(\mathcal{N}, \Sigma, S, \mathcal{P})$ where:

```
N}={\textrm{S},\textrm{X},\textrm{Y},\textrm{V},\textrm{C}
\Sigma = \{ a , c o n t a g i o u s , h i g h l y , v i r u s \}
S=S
\mathcal{P}}={\textrm{S}->\textrm{a}\textrm{X},\textrm{X}->\textrm{Y}\mathrm{ virus | virus, Y }->\textrm{V C | C,
        V highly V | highly, C }->\mathrm{ contagious C | contagious}
```

(a) Draw all the trees with 4 leaves that can be derived from this grammar.
(b) Based on corpus data the linguist assigns probabilities to each rule in his grammar. Describe how the probability of a string is calculated from the rule probabilities.

A mathematician prefers to generate the strings of a language inductively. She defines a homomorphism: $\{(a, a),(c$, contagious $),(h$, highly $),(v, v i r u s)\}$. She defines $L \subset \Sigma^{*}$ where $\Sigma=\{a, c, h, v\}$ using the following axioms and rules:

$$
\begin{gathered}
\overline{a v}(\mathrm{al}) \\
\frac{u_{1} v}{u_{1} c v}(\mathrm{r} 1) \text { where } u_{1} \in \Sigma^{*} \\
\frac{a c u_{1}}{a h c u_{1}}(\mathrm{r} 2) \text { where } u_{1} \in \Sigma^{*} \\
\frac{u_{1} h u_{2}}{u_{1} h h u_{2}}(\mathrm{r} 3) \text { where } u_{1}, u_{2} \in \Sigma^{*}
\end{gathered}
$$

(c) Let $L_{i}=\{u \in L \mid$ length $(u) \leq i\}$. Find all members of L_{4}
(d) Describe L as a regular expression and specify a Deterministic Finite Automaton, M, such that $L(M)=L$.
(e) Provide an expression for the conditional entropy of X for L_{5}, where X is a random variable over Σ. A numerical value is not required.
(f) Suggest some hypotheses about human language processing that we could test based on the models mentioned in this question. Provide reasons for your hypotheses.

