COMPUTER SCIENCE TRIPOS Part IB – 2021 – Paper 6

7 Data Science (djw1005)

- (a) Let x_t be the number of new COVID infections on date t. We anticipate approximately exponential growth or decay, $x_{t+1} \approx (1 + \lambda)x_t$, and we would like to estimate λ from a dataset (x_1, \ldots, x_T) .
 - (i) Find the maximum likelihood estimator for λ for the model

$$X_{t+1} \sim \operatorname{Poisson}\left((1+\lambda)x_t\right)$$

[2 marks]

(*ii*) Find the maximum likelihood estimator for λ for the model

$$X_{t+1} \sim \operatorname{Normal}((1+\lambda)x_t, (\sigma x_t)^2)$$

[3 marks]

- (*iii*) For the latter model, explain how to compute a 95% confidence interval for λ . Explain the resampling step carefully. [4 marks]
- (b) We don't actually know the number of new infections x_t on date t: we only know the number of new positive test results, y_t . We anticipate $y_t \approx \beta_{\text{dow}(t)} x_t$, where dow(t) gives the day of the week for date t. We would like to estimate not only λ but also $\beta_{\text{Mon}}, ..., \beta_{\text{Sun}}$ from the dataset (y_1, \ldots, y_T) .
 - (i) Propose a probability model for Y_{t+1} in terms of y_t . [5 marks]
 - (ii) Explain briefly how to estimate the parameters of your model. In your answer, you should consider whether or not the parameters are identifiable.
 [6 marks]