COMPUTER SCIENCE TRIPOS Part IB - 2021 - Paper 6

6 Computation Theory (amp12)

A set A equipped with a binary operation $@: A \times A \rightarrow A$ is a combinatory algebra if there are elements $K, S \in A$ satisfying for all $a, b, c \in A$

$$
\begin{align*}
@(@(K, a), b) & =a \tag{1}\\
@(@(@(S, a), b), c) & =@(@(a, c), @(b, c)) \tag{2}
\end{align*}
$$

(a) Show that there is a binary operation on the set of equivalence classes of closed λ-terms for the equivalence relation of β-conversion that makes it a combinatory algebra.
(b) Show that every combinatory algebra A contains an element I satisfying

$$
\begin{equation*}
@(I, a)=a \tag{3}
\end{equation*}
$$

for all $a \in A$. [Hint: what does (2) tell us when $a=b=K$?]
(c) For an arbitrary combinatory algebra A, let $A[x]$ denote the set of expressions given by the grammar

$$
e::=x|\ulcorner a\urcorner|(e e)
$$

where x is some fixed symbol not in A and a ranges over the elements of A. Given $e \in A[x]$ and $a \in A$, let $e[x:=a]$ denote the element of A resulting from interpreting occurrences of x in e by a, interpreting the expressions of the form $\left\ulcorner a^{\prime}\right\urcorner$ by a^{\prime} and interpreting expressions of the form (ee) using @.
(i) Give the clauses in a definition of $e[x:=a]$ by recursion on the structure of e.
(ii) For each $e \in A[x]$ show how to define an element $\Lambda_{x} e \in A$ with the property that

$$
\begin{equation*}
@\left(\Lambda_{x} e, a\right)=e[x:=a] \tag{7}
\end{equation*}
$$

for all $a \in A$.
(d) Recall the usual encoding of Booleans in λ-calculus. Using Part (c)(ii), show that in any combinatory algebra A there are elements True, False $\in A$ and a function If : $A \times A \rightarrow A$ satisfying

$$
\begin{align*}
@(\operatorname{If}(a, b), \operatorname{Tr} u e) & =a \tag{11}\\
@(\operatorname{If}(a, b), \text { False }) & =b \tag{12}
\end{align*}
$$

for all $a, b \in A$

