COMPUTER SCIENCE TRIPOS Part IB – 2021 – Paper 6

6 Computation Theory (amp12)

A set A equipped with a binary operation $@: A \times A \to A$ is a *combinatory algebra* if there are elements $K, S \in A$ satisfying for all $a, b, c \in A$

$$@(@(K,a),b) = a$$
(1)

$$@(@(@(S,a),b),c) = @(@(a,c),@(b,c))$$
(2)

- (a) Show that there is a binary operation on the set of equivalence classes of closed λ -terms for the equivalence relation of β -conversion that makes it a combinatory algebra. [5 marks]
- (b) Show that every combinatory algebra A contains an element I satisfying

$$@(I,a) = a \tag{3}$$

for all $a \in A$. [Hint: what does (2) tell us when a = b = K?] [2 marks]

(c) For an arbitrary combinatory algebra A, let A[x] denote the set of expressions given by the grammar

$$e ::= x \mid \lceil a \rceil \mid (ee)$$

where x is some fixed symbol not in A and a ranges over the elements of A. Given $e \in A[x]$ and $a \in A$, let e[x := a] denote the element of A resulting from interpreting occurrences of x in e by a, interpreting the expressions of the form $\lceil a' \rceil$ by a' and interpreting expressions of the form (ee') using @.

- (i) Give the clauses in a definition of e[x := a] by recursion on the structure of e. [2 marks]
- (*ii*) For each $e \in A[x]$ show how to define an element $\Lambda_x e \in A$ with the property that

$$@(\Lambda_x e, a) = e[x := a] \tag{7}$$

for all $a \in A$.

[6 marks]

(d) Recall the usual encoding of Booleans in λ -calculus. Using Part (c)(ii), show that in any combinatory algebra A there are elements $True, False \in A$ and a function $If : A \times A \to A$ satisfying

$$@(If(a,b), True) = a$$
(11)

$$@(If(a,b), False) = b$$
(12)

for all
$$a, b \in A$$
 [5 marks]