## COMPUTER SCIENCE TRIPOS Part Ib - 2021 - Paper 6

## 5 Computation Theory (amp12)

(a) For each $n, e \in \mathbb{N}$, let $\varphi_{e}^{(n)}$ denote the partial function $\mathbb{N}^{n} \rightarrow \mathbb{N}$ computed by the register machine with index $e$ using registers $\mathrm{R}_{1}, \ldots, \mathrm{R}_{n}$ to store the $n$ arguments and register $R_{0}$ to store the result, if any.

Explain why for each $m, n \in \mathbb{N}$ there is a totally defined register machine computable function $S_{m, n}: \mathbb{N}^{1+m} \rightarrow \mathbb{N}$ with the property that for all $(e, \vec{x}) \in$ $\mathbb{N}^{1+m}$ and $\vec{y} \in \mathbb{N}^{n}$

$$
\begin{equation*}
\varphi_{S_{m, n}(e, \vec{x})}^{(n)}(\vec{y}) \equiv \varphi_{e}^{(m+n)}(\vec{x}, \vec{y}) \tag{1}
\end{equation*}
$$

where $\equiv$ denotes Kleene equivalence: for all $z \in \mathbb{N}$, the left-hand side is defined and equal to $z$ if and only if the right-hand side is defined and equal to $z$. Your explanation should make clear what assumptions you are making about the relationship between numbers and register machine programs. [10 marks]
(b) Let $f: \mathbb{N}^{1+m+n} \rightarrow \mathbb{N}$ be a register machine computable partial function of $1+m+n$ arguments for some $m, n \in \mathbb{N}$.
(i) Why is the partial function $\hat{f}: \mathbb{N}^{1+m+n} \rightarrow \mathbb{N}$ satisfying for all $(z, \vec{x}, \vec{y}) \in$ $\mathbb{N}^{1+m+n}$

$$
\begin{equation*}
\hat{f}(z, \vec{x}, \vec{y}) \equiv f\left(S_{1+m, n}(z, z, \vec{x}), \vec{x}, \vec{y}\right) \tag{2}
\end{equation*}
$$

register machine computable?
(ii) By considering $S_{1+m, n}(e, e, \vec{x})$ where $e$ is an index for the partial function $\hat{f}$ in part $(b)(i)$, prove that there is a totally-defined register machine computable function fix $f: \mathbb{N}^{m} \rightarrow \mathbb{N}$ with the property that for all $\vec{x} \in \mathbb{N}^{m}$ and $\vec{y} \in \mathbb{N}^{n}$

$$
\begin{equation*}
\varphi_{\mathrm{fix} f(\vec{x})}^{(n)}(\vec{y}) \equiv f(\mathrm{fix} f(\vec{x}), \vec{x}, \vec{y}) \tag{3}
\end{equation*}
$$

