COMPUTER SCIENCE TRIPOS Part IB - 2021 - Paper 6

4 Complexity Theory (mpf23)

(a) For a complexity class C, let co- $C = \{ \overline{L} \mid L \in C \}$ and say that C is closed under complementation whenever C = co-C.

Argue as to whether the following statements are true, false, or unknown.

- (i) All deterministic time complexity classes are closed under complementation. [3 marks]
- (ii) All non-deterministic time complexity classes are closed under complementation. [3 marks]
- (b) For a mapping $f : \Sigma \to \Sigma$ on an alphabet Σ and a language $L \subseteq \Sigma^*$, define $f[L] = \{ f^{\natural}(w) \in \Sigma^* \mid w \in L \}$ where $f^{\natural}(a_1 \cdots a_n) = f(a_1) \cdots f(a_n)$.

Prove that $L \in NP$ implies $f[L] \in NP$. [4 marks]

(c) Consider the following decision problem.

Q: Given natural numbers m and n in \mathbb{N} , and bits $a_{i,j}^{(k)}$ and b_k in $\{0,1\}$ for $1 \leq k \leq m$ and $1 \leq i, j \leq n$, determine whether the system of equations $\sum_{1 \leq i, j \leq n} a_{i,j}^{(k)} x_i x_j = b_k$ $(1 \leq k \leq m)$ with unknowns x_1, \ldots, x_n has a solution in arithmetic modulo 2.

- (i) Prove that Q is in NP. [3 marks]
- (*ii*) By means of a polynomial-time reduction from the problem 3CNF, or otherwise, prove that Q is NP-hard. [*Hint:* Note, for instance, that $x = \neg y$ in the Boolean algebra $\{0,1\}$ if, and only if, xx + yy = 1 in arithmetic modulo 2.] [7 marks]

You may use standard results provided that you state them clearly.