COMPUTER SCIENCE TRIPOS Part IB – 2021 – Paper 5

3 Computer Design (tmj32)

A processor contains two cores, each with an L1 cache connected via a shared bus to an L2 cache, which is then connected to main memory. Each L1 is a direct-mapped, 4 KiB, write-back cache. The L2 is a 4-way set-associative 16 KiB cache with the least-recently-used replacement policy. All cache lines are 16 B long. The hierarchy is inclusive, runs the MSI cache coherence protocol and is initially empty.

- (a) Considering this cache hierarchy,
 - (i) Explain whether it would be suitable for a system-on-chip that is only running single-threaded applications. [2 marks]
 - (*ii*) Explain whether it would be suitable for a system-on-chip where each core processes a small (e.g. ≤ 1 KiB) array of data at a time. [2 marks]
- (b) Show the cache contents and coherence state of cache lines after each access in the following sequence of physical addresses, stating any assumptions you have made. All accesses are 4 bytes long and entirely complete before the next one starts.

Core	1:	Read	0xab18
Core	2:	Read	0xdb14
Core	1:	Write	0x1b10
Core	1:	Read	0xab14
Core	1:	Read	0xbb1c
Core	2:	Write	0xa010
Core	1:	Read	0x2b10
Core	2:	Read	0x1b10
Core	1:	Read	0xa018
Core	1:	Write	0x1b14

[8 marks]

- (c) Describe the impact of each change below (in isolation) on the cache hierarchy.
 - (i) Increasing the L1 cache size.
 - (*ii*) Increasing the line size in all caches.
 - (*iii*) Increasing the associativity of the L1 caches.
 - (*iv*) Changing to an exclusive cache hierarchy.

[2 marks each]