COMPUTER SCIENCE TRIPOS Part IA 75\%, Part IB 50\% - 2021 - Paper 3

7 Machine Learning and Real-world Data (sht25)

Consider the directed graph shown in the figure below, which expresses cooperation amongst individuals ($\mathrm{A}, \mathrm{B}, \ldots, \mathrm{H}$) in a fishing village. The meaning of an edge from X to Y is that X has asked Y for advice or help during fishing at least once.

(a) Consider the betweenness centrality of each individual in this network, which is listed in the following table.

A	B	C	D	E	F	G	H
6	12	2	9	0	12	8	0

(i) Give a definition of the betweenness centrality of a node.
(ii) Explain intuitively why B and F have the highest betweenness centralities and why E and H have betweenness centralities of 0 .
(b) We now look at what happens if the network is converted into an undirected network.
(i) What is the diameter of this network and why? Your question should include a definition of diameter.
[2 marks]
(ii) Do the betweenness centralities of nodes A and C change, and why? Explain in terms of affected paths.
(iii) Consider the general case of two near-identical graphs S and T , where S is a directed graph and T is the undirected version of S , i.e., every edge (u, v) in S is replaced by an undirected edge (u, v) in T . Which of the following statements are true about the betweenness centrality of any pair of nodes X_{S} and X_{T}, which are in identical relative position in the graphs? Justify your answer or provide a counter example.
(A) The betweenness centrality of X_{S} is always at least that of X_{T}.
(B) The betweenness centrality of X_{S} is always equal to that of X_{T}.
(C) The betweenness centrality of X_{S} is always at most that of X_{T}.
(c) In directed graphs, the in-degree of a node v is defined as the number of incoming edges (u, v), whereas the node's out-degree is defined as the number of outgoing edges (v, u).
(i) What does high in-degree and out-degree mean in the context of the fishing collaboration?
[2 marks]
(ii) Directed graphs are called "strongly connected" if there exists a path from every node to every other node. Is the graph in Figure 1 strongly connected? Justify your answer.
(iii) What is the relation between strong connectedness of a directed graph and its nodes' in- and out-degrees?
[3 marks]

