COMPUTER SCIENCE TRIPOS Part IA - 2021 - Paper 2

9 Discrete Mathematics (mpf23)

(a) Prove that $4^{n}+6 n-1 \equiv 0(\bmod 9)$ for all natural numbers n.
(b) (i) State one of the standard characterizations of the reflexive-transitive closure $R^{\star} \subseteq A \times A$ of a binary relation R on a set A.
(ii) For the given characterization for a binary relation R on a set A, prove that $R^{\star}=\bigcup_{n \in \mathbb{N}} R_{n}$ where $R_{0}=\emptyset$ and, for $n \in \mathbb{N}, R_{n+1}=\operatorname{id}_{A} \cup\left(R \circ R_{n}\right)$. You may use standard results provided that you state them clearly. [8 marks]
(c) Let $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ be a family of pairwise-disjoint subsets of natural numbers; that is, such that $\forall S, T \in \mathcal{F} . S \neq T \Longrightarrow S \cap T=\emptyset$.

State whether or not the set \mathcal{F} may be uncountable and prove your claim.
[6 marks]

