COMPUTER SCIENCE TRIPOS Part IA – 2021 – Paper 2

8 Discrete Mathematics (mpf23)

- (a) Let i and j be positive integers.
 - (i) Prove that there exist natural numbers a and b such that $a \cdot i = b \cdot j + \gcd(i, j)$. You may use standard results provided that you state them clearly. [4 marks]
 - (ii) Let m be a positive integer. Prove that, for all integers n,

$$(n^i \equiv 1 \pmod{m} \land n^j \equiv 1 \pmod{m}) \implies n^{\gcd(i,j)} \equiv 1 \pmod{m}$$
[3 marks]

(b) (i) For sets A and B, let \approx be the binary relation on $(A \Rightarrow B)$ defined, for all $f, g \in (A \Rightarrow B)$, by

$$f \approx g \iff \exists \alpha \in \operatorname{Bij}(A, A) \colon \exists \beta \in \operatorname{Bij}(B, B) \colon \beta \circ f = g \circ \alpha$$

Prove that \approx is an equivalence relation on $(A \Rightarrow B)$. [9 marks]

(*ii*) Recalling that, for $n \in \mathbb{N}$, we let $[n] = \{ i \in \mathbb{N} \mid 0 \le i < n \}$, define

$$S_n = \left(\left[n \right] \Rightarrow \left[2 \right] \right)_{\approx}$$

that is, the set S_n is the quotient of $([n] \Rightarrow [2])$ under the equivalence relation \approx .

- (A) List the elements of S_n for each $n \in [4]$. [2 marks]
- (B) What is the cardinality of S_n for each $n \in \mathbb{N}$? [2 marks]