COMPUTER SCIENCE TRIPOS Part IA - 2021 - Paper 2

8 Discrete Mathematics (mpf23)

(a) Let i and j be positive integers.
(i) Prove that there exist natural numbers a and b such that $a \cdot i=b \cdot j+\operatorname{gcd}(i, j)$. You may use standard results provided that you state them clearly.
(ii) Let m be a positive integer. Prove that, for all integers n,

$$
\left(n^{i} \equiv 1(\bmod m) \wedge n^{j} \equiv 1(\bmod m)\right) \Longrightarrow n^{\operatorname{gcd}(i, j)} \equiv 1(\bmod m)
$$

(b) (i) For sets A and B, let \approx be the binary relation on $(A \Rightarrow B)$ defined, for all $f, g \in(A \Rightarrow B)$, by

$$
f \approx g \Longleftrightarrow \exists \alpha \in \operatorname{Bij}(A, A) . \exists \beta \in \operatorname{Bij}(B, B) . \beta \circ f=g \circ \alpha
$$

Prove that \approx is an equivalence relation on $(A \Rightarrow B)$.
(ii) Recalling that, for $n \in \mathbb{N}$, we let $[n]=\{i \in \mathbb{N} \mid 0 \leq i<n\}$, define

$$
S_{n}=([n] \Rightarrow[2]) / \approx
$$

that is, the set S_{n} is the quotient of $([n] \Rightarrow[2])$ under the equivalence relation \approx.
(A) List the elements of S_{n} for each $n \in[4]$.
(B) What is the cardinality of S_{n} for each $n \in \mathbb{N}$?

