COMPUTER SCIENCE TRIPOS Part IA - 2021 - Paper 2

1 Digital Electronics (ijw24)

(a) Show that
(i) $\quad(X+Y) \cdot(X+\bar{Y})=X$
(ii) $(X+Y) \cdot(\bar{X}+Z)=(X+Y) \cdot(\bar{X}+Z) \cdot(Y+Z)$
(b) With the help of the results in Part (a) or otherwise, simplify the following Boolean expression for W in to a product of sums (POS) form having 3 product terms, each having 3 literals

$$
\begin{aligned}
W= & (A+\bar{C}+\bar{F}+G) \cdot(A+\bar{C}+F+G) \cdot(A+B+\bar{C}+\bar{D}+G) \\
& .(A+C+E+G) \cdot(\bar{A}+B+G) \cdot(B+\bar{C}+F+G)
\end{aligned}
$$

[10 marks]
(c) (i) Using a Karnaugh map, simplify the following Boolean expression for V into a product of sums (POS) form

$$
V=A \cdot B \cdot C \cdot \bar{D}+A \cdot \overline{B \cdot C \cdot D}+\overline{(A+B+C+D)}
$$

(ii) Implement the simplified expression for V obtained in Part $(c)(i)$ using only NOR gates. Assume 2 and 4 input gates are available. Also assume complemented input variables are available.

