COMPUTER SCIENCE TRIPOS Part IA - 2021 - Paper 1

6 Introduction to Probability (mj201)

(a) A korfball player is practicing shots and has a 90% chance of scoring. Assume that their shots are independent of one another.
(i) Let S be the number of successful shots made in 200 attempts. Specify a suitable distribution for S including its parameters, and compute the expected value and variance. What is the probability mass function of S ?
(ii) Following the experiment in Part $(a)(i)$, let M be the number of shots made before the first miss. Specify a suitable distribution for M including its parameters, and compute the expected value and variance. What is the probability of $M>100$?
[4 marks]
(iii) Use a suitable distribution to approximate the probability that there are at most 3 misses in the first 200 shots. Note: you do not need to compute the final numerical value.
(b) Consider an urn containing balls labelled $0,1,2, \ldots, n-1$ and the experiment of drawing n of these balls uniformly and without replacement. Let X_{i} denote the label of the ball drawn in the i-th step, $1 \leq i \leq n$.
(i) For any $1 \leq i \leq n$, what is $\mathbf{E}\left[X_{i}\right]$ and $\mathbf{V}\left[X_{i}\right]$? Justify your answer.
(ii) Compute $\operatorname{Cov}\left[X_{1}, X_{2}\right]$.
(iii) Suppose now that n is an unknown parameter and you observe the absolute difference between the labels of the first two balls, that is, $Z:=\left|X_{1}-X_{2}\right|$. Can you find an unbiased estimator of n based on Z ? Justify your answer.

