COMPUTER SCIENCE TRIPOS Part II - 2020 - Paper 9

1 Advanced Algorithms (tms41)

(a) (i) What is the approximation ratio of an approximation algorithm?
(ii) State the definitions of PTAS and FPTAS.
(b) Consider the two approximation algorithms for VERTEX-COVER from the lectures (one greedy algorithm and one based on rounding a linear program).
(i) What are the approximation ratios of these two algorithms? [2 marks]
(ii) Construct an input graph that demonstrates the tightness of the approximation ratio of the greedy algorithm (for full marks, your construction should work for any even number of vertices n).
(c) Consider the following randomised algorithm to compute a solution of the VERTEX-COVER problem for an unweighted graph $G=(V, E)$:

```
Let C be the empty set
While E not empty do
    Pick any edge e={u,v} from E
    Choose x from {u,v} uniformly at random
    Add x to C
    Remove all edges incident to x from E
End While
Return C
```

(i) Explain briefly why the set C returned is a valid vertex cover. [2 marks]
(ii) Find a lower bound on the probability that the algorithms returns an optimal solution.
Hint: For each edge $e=\{u, v\}$ picked by the algorithm consider the event that the chosen vertex $x \in\{u, v\}$ added to C is also part of an optimal cover.
[4 marks]
(iii) Given a lower bound $p \in(0,1)$ on the probability that this algorithm returns an optimal solution, describe a new algorithm that returns an optimal solution with probability at least δ, for any given $\delta \in[p, 1)$.
[3 marks]

