COMPUTER SCIENCE TRIPOS Part II - 2020 - Paper 8

8 Hoare Logic and Model Checking (jp622)

Consider commands C composed from assignments $X:=E$ (where X is a program variable, and E is an arithmetic expression), heap allocation $X:=\operatorname{alloc}\left(E_{1}, \ldots, E_{n}\right)$, heap assignment $\left[E_{1}\right]:=E_{2}$, heap dereference $X:=[E]$, disposal of heap locations dispose (E), the no-op skip, sequencing $C_{1} ; C_{2}$, conditionals if B then C_{1} else C_{2} (where B is a boolean expression), and loops while B do C. null is 0 .
Recall the separation logic partial list representation predicates:

$$
\begin{array}{ll}
\operatorname{plist}(t,[], u) & =(t=u) \wedge \mathrm{emp} \\
\operatorname{plist}(t, h:: \alpha, u) & =\exists y \cdot((t \mapsto h) *((t+1) \mapsto y) * \operatorname{plist}(y, \alpha, u))
\end{array}
$$

Circular lists can be represented by $\operatorname{clist}(t, \alpha)=\operatorname{plist}(t, \alpha, t) \wedge(\alpha=[] \Rightarrow t=$ null $)$.
(a) Assuming $\vdash\left\{P_{1}\right\} C_{1}\left\{Q_{1}\right\}$ and $\vdash\left\{P_{2}\right\} C_{2}\left\{Q_{2}\right\}$:
(i) explain precisely why $\vdash\left\{P_{1} * P_{2}\right\} C_{1} ; C_{2}\left\{Q_{1} * Q_{2}\right\}$
(ii) give a counterexample to $\vdash\left\{P_{1} \wedge P_{2}\right\} C_{1} ; C_{2}\left\{Q_{1} \wedge Q_{2}\right\}$.
(b) Give a proof outline for the following circular list 'next' triple:

$$
\{\operatorname{clist}(X, t:: \alpha)\} X:=[X+1]\{\operatorname{clist}(X, \alpha+[t])\} \quad[3 \text { marks }]
$$

(c) Give a loop invariant (no need for a proof outline) for the following circular list 'length' triple:]
$\{\operatorname{clist}(X, \alpha)\}$
if $X=$ null then $Y:=0$
else $(Z:=[X+1] ; Y:=1$; while $Z \neq X$ do $(Z:=[Z+1] ; Y:=Y+1))$
$\{\operatorname{clist}(X, \alpha) * Y=\operatorname{length}(\alpha)\}$
[3 marks]
(d) Give a loop invariant (no need for a proof outline) for the following triple for a 'previous' operation on non-empty circular lists:

$$
\begin{aligned}
& \{\operatorname{clist}(X, \alpha+[t])\} \\
& Z:=X ; Y:=[X+1] ;(\text { while } Y \neq X \text { do }(Z:=Y ; Y:=[Y+1])) ; X:=Z \\
& \{\operatorname{clist}(X, t:: \alpha)\}
\end{aligned}
$$

(e) Give a loop invariant (no need for a proof outline) for the following triple for a 'dial to minimum' operation on non-empty circular lists:

$$
\begin{aligned}
& \left\{\operatorname{clist}\left(X, \alpha_{1}+[t]+\alpha_{2}\right) \wedge \operatorname{sorted}\left(t:: \text { merge }\left(\operatorname{sort}\left(\alpha_{1}\right), \text { sort }\left(\alpha_{2}\right)\right)\right)\right\} \\
& Z:=X ; M:=[X] ; Y:=[X+1] ; \\
& (\text { while } Y \neq Z \text { do } \\
& \quad(N:=[Y] ;(\text { if } N<M \text { then } X:=Y \text { else skip }) ; Y:=[Y+1])) ; \\
& \left\{\operatorname{clist}\left(X,[t]+\alpha_{2}+\operatorname{reverse}\left(\alpha_{1}\right)\right)\right\}
\end{aligned}
$$

(f) Describe precisely all pairs of a stack and a heap that satisfy

$$
\exists y, z \cdot((X \mapsto y * y \mapsto z * z \mapsto X) \wedge Y=0)
$$

