COMPUTER SCIENCE TRIPOS Part II - 2020 - Paper 8

5 Cryptography (mgk25)

(a) (i) One way to use a secure hash function H to form a message-authentication code is the construct $\operatorname{Mac}_{K}(M)=H(K \| M)$. What problem with that approach does the HMAC construct solve?
(ii) Why does the HMAC construct pad the key?
(b) Your opponent has started using HomeBrew, a new block cipher $C=E_{K}(M)$ that they invented last week. It uses a 96 -bit key $K=K_{1}\|\ldots\| K_{12}$, where each of the 12 bytes $K_{i}(1 \leq i \leq 12)$ is used as an 8 -bit subkey in one of the 12 rounds that apply a keyed permutation f :

$$
\begin{aligned}
R_{0} & :=M \\
\text { for } i & :=1 \text { to } 12 \\
R_{i} & :=f_{K_{i}}\left(R_{i-1}\right) \\
C & :=R_{12}
\end{aligned}
$$

Describe an attack to find K for this type of block cipher that is practical for an adversary with a computer fast enough to execute such a block cipher around 2^{50} times and that can store and lookup around 2^{50} keys and messages.
(c) Your colleague has proposed the following digital signature algorithm. Let (\mathbb{G}, q, g) be system-wide choices of a cyclic group \mathbb{G} of prime order q with generator g such that the discrete logarithm problem in \mathbb{G} is computationally infeasible. Further let $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{*}$ be a collision-resistant hash function. Pick a secret key $x \in \mathbb{Z}_{q}$ uniformly at random and let (y, r) with $y:=g^{x} \in \mathbb{G}$ and $r:=H\left(g^{H(x)}\right)$ be the corresponding public key.

Then use as the signature of message $m \in\{0,1\}^{*}$ the value $s \in \mathbb{Z}_{q}^{*}$ found by solving

$$
H(x) \cdot s \equiv x \cdot r+H(m) \quad(\bmod q)
$$

for $s=[H(x)]^{-1} \cdot[x \cdot r+H(m)]$. (Here a^{-1} denotes the multiplicative inverse of finite-field element $a \in \mathbb{Z}_{q}^{*}$. Your colleague considers $\mathbb{P}(s=0)$ negligible.)

The recipient, given $(\mathbb{G}, q, g, H),(y, r),(m, s)$ verifies that signature by checking the equation

$$
H\left(y^{r \cdot s^{-1}} g^{H(m) \cdot s^{-1}}\right)=r
$$

Show that this signature scheme does not provide existential unforgability.
[8 marks]

