COMPUTER SCIENCE TRIPOS Part II - 2020 - Paper 8

14 Quantum Computing (sjh227)

(a) In the superdense coding protocol, Alice and Bob each have one qubit from the entangled pair $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, which enables Alice to send two bits of classical information to Bob, using a single qubit. Explain the superdense coding protocol in detail, and show that it does indeed enable the transmission of two bits using a single qubit.
[10 marks]
(b) This question concerns entangled states.
(i) Suppose Alice transmits the two-bit string ' 00 ' using the superdense coding protocol and an evesdropper, Eve, intercepts the qubit transmitted by Alice, measures it in the computational basis and then re-transmits to Bob. Find the probability that Bob correctly receives ' 00 '.
(ii) Suppose further that prior to Eve's interception there is a 50% probability that the qubit experiences a bit-flip. What is the probability that Bob correctly receives 00 ? (Note that after Eve's retransmission no errors occur)
[5 marks]

