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COMPUTER SCIENCE TRIPOS Part II – 2020 – Paper 8

Advanced Algorithms (tms41)

(a) State the fundamental theorem of Linear Programming. [3 marks]

(b) Consider the following linear program:

minimise 4 · x1 − x2

−x1 + 5x2 ≥ 4

x1 − 0.5x2 ≤ 1

x1, x2 ≥ 0

(i) Convert this linear program into slack form. [3 marks]

(ii) What is the number of different slack forms of the linear program in Part
(b)(i)? [2 marks]

(iii) Give at least one non-feasible and one feasible basic solution of the linear
program in (b)(i). [4 marks]

(c) Consider the following separation problem. We are given m points x1 =
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2 ) ∈ R2. The goal is to find a “separating” vector

w = (w1, w2) ∈ R2 (if it exists) such that:

〈xi, w〉 =
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and

〈yi, w〉 =
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yijwj < 0 for i = 1, 2, ..., n.

(i) Create a new, equivalent system of inequalities by replacing each strict
inequality by a suitable non-strict inequality. Justify why this new system
has a solution if and only if the original system has one. [4 marks]

(ii) Based on your answer in Part (c)(i), how can you solve the above problem
using linear programming? [4 marks]
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