COMPUTER SCIENCE TRIPOS Part IB - 2020 - Paper 6

7 Foundations of Data Science (djw1005)

Consider the probability model

$$
\begin{array}{ccccccc}
X_{0} \rightarrow X_{1} & \rightarrow & X_{2} & \rightarrow & X_{3} & \rightarrow \cdots \\
& \downarrow & & \downarrow & & \downarrow & \\
& Y_{1} & & Y_{2} & & Y_{3}
\end{array}
$$

where $\left(X_{0}, X_{1}, \ldots\right)$ is a Markov chain on state space $\{0,1\}$ with transition probabilities $P_{01}=p, P_{10}=q$; and where each Y_{i} is normally distributed with mean X_{i} and variance σ^{2}.

We are given a sequence of observations $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, and we wish to make an inference about the unobserved values $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. We will take $0<p<1$, $0<q<1$, and $\sigma>0$ to be known, and we will assume that X_{0} is sampled from the Markov chain's stationary distribution.
(a) Write out the transition matrix for the Markov chain $\left(X_{0}, X_{1}, \ldots\right)$. Calculate its stationary distribution.
(b) Writing \vec{X} for $\left(X_{0}, X_{1}, \ldots, X_{n}\right)$, and writing \vec{Y} for $\left(Y_{1}, \ldots, Y_{n}\right)$, and similarly \vec{x} and \vec{y}, find expressions for

$$
\mathbb{P}(\vec{X}=\vec{x}) \quad \text { and for } \quad \mathbb{P}(\vec{Y}=\vec{y} \mid \vec{X}=\vec{x}) .
$$

(c) Give pseudocode for a function $r x(n)$ that generates a random \vec{X}. Give pseudocode to generate a weighted sample from the posterior distribution of \vec{X} conditional on the observed data $\vec{Y}=\vec{y}$.
(d) Let $Z=n^{-1} \sum_{i=1}^{n} X_{i}$. Give pseudocode to find a 95% confidence interval for Z, conditional on the observed data $\vec{Y}=\vec{y}$.

