COMPUTER SCIENCE TRIPOS Part IB – 2020 – Paper 6

6 Computation Theory (amp12)

- (a) Define the Church numerals for zero ($\underline{0}$), one ($\underline{1}$) and for an arbitrary natural number (\underline{n}). [2 marks]
- (b) Define encodings of Booleans as λ -terms (True, False and If). [1 mark]
- (c) Explain what it means for a λ term to *represent* a number-valued partial function of n numerical arguments; do the same for one returning Boolean instead of numerical results. [3 marks]
- (d) Give λ -terms that represent the following functions:
 - (i) successor (Succ) [1 mark]
 - (*ii*) test for zero (Eq_0) [1 mark]
- (e) Define encodings of pairing and projections (Pair, Fst and Snd). [2 marks]
- (f) What function $\mathbb{N} \to \mathbb{N}$ is represented by the following λ -term? Carefully justify your answer.

 $\lambda x. \operatorname{Snd}(x(\lambda y. \operatorname{Pair}(\operatorname{Succ}(\operatorname{Fst} y))(\operatorname{Fst} y))(\operatorname{Pair} \underline{0} \underline{0}))$

[6 marks]

(g) Give with justification a λ -term that represents the function mapping each pair of numbers (m, n) to True if $m \leq n$ and to False otherwise. [Hint: use the λ -terms from parts (d)(ii) and (f).] [4 marks]