COMPUTER SCIENCE TRIPOS Part IB - 2020 - Paper 4

8 Semantics of Programming Languages (nk480)

(a) Suppose we have a language with booleans, integers, and mutable variables:

$$
\begin{aligned}
& e::=n\left|e_{0}+e_{1}\right| e_{0}<e_{1} \mid \text { true } \mid \text { false } \mid \text { if } e \text { then } e_{1} \text { else } e_{2} \\
& \quad|x| \operatorname{var} x=e_{0} \text { in } e_{1} \mid x:=e
\end{aligned}
$$

(i) Give a grammar for the values of this language.
(ii) What mathematical object should be used to represent a store σ (which tracks which values each variable has)?
[1 mark]
(iii) Give a reasonable operational semantics for this language, as a transition relation. (You may assume the existence of a substitution operation $\{v / x\} e$.

$$
\langle\sigma ; e\rangle \leadsto\left\langle\sigma^{\prime} ; e^{\prime}\right\rangle
$$

This semantics should ensure (though you need not prove) that for any configuration $\langle\sigma ; e\rangle$, it is either of the form $\langle\sigma ; v\rangle$ with no further transitions, or otherwise it has at most one transition $\langle\sigma ; e\rangle \leadsto\left\langle\sigma^{\prime} ; e^{\prime}\right\rangle$. In addition to the formal rules, give an explanation of the reduction rules you define for variable declarations var $x=e_{0}$ in e_{1} and assignments $x:=e$.
(b) (i) Define a reasonable set of types for this programming language. [1 mark]
(ii) Explain what a typing context should look like for this language.
(iii) Define a set of typing rules for this programming language, which should ensure type safety.
(iv) State (but do not prove) the progress and type preservation theorems for this language.

