COMPUTER SCIENCE TRIPOS Part IA - 2020 - Paper 2

8 Discrete Mathematics (mpf23)

(a) Let $\mathbb{N}_{+}=\{\ell \in \mathbb{N} \mid \ell>0\}$.
(i) Prove that, for all $a, b \in \mathbb{N}_{+}$, if $a>b$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$.
(ii) Prove the following statement for all $q \in \mathbb{N}_{+}$,

$$
\forall n \in \mathbb{N}_{+} . \forall r \in \mathbb{N}_{+} \cdot \operatorname{gcd}\left(2^{q \cdot n+r}-1,2^{n}-1\right)=\operatorname{gcd}\left(2^{r}-1,2^{n}-1\right)
$$

[Hint: Proceed by induction on q].
(iii) Prove that, for all $q, n \in \mathbb{N}_{+}, \operatorname{gcd}\left(2^{q \cdot n}-1,2^{n}-1\right)=2^{n}-1$.
(iv) For $m, n \in \mathbb{N}_{+}$, give a formula for $\operatorname{gcd}\left(2^{m}-1,2^{n}-1\right)$. Briefly justify your answer.
(b) Prove that there is no surjection from \mathbb{N} to $(\mathbb{N} \Rightarrow\{0,1\})$.

