COMPUTER SCIENCE TRIPOS Part II - 2019 - Paper 9

9 Information Theory (jgd1000)

(a) If I pick a number n that can be any integer from 1 to ∞ whose probability distribution of being selected is $\left(\frac{1}{2}\right)^{n}$, and you ask a series of 'yes/no' questions which I will answer truthfully, how many such 'yes/no' questions should you expect to ask before discovering which number I have picked? Justify your answer by invoking a known series limit. What sequence of questions would be the most efficient to ask, and why?
(b) An inner product space containing complex functions $f(x)$ and $g(x)$ is spanned by a set of orthonormal basis functions $\left\{e_{i}\right\}$. Complex coefficients $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i}\right\}$ therefore exist such that $f(x)=\sum_{i} \alpha_{i} e_{i}(x)$ and $g(x)=\sum_{i} \beta_{i} e_{i}(x)$.

Show that the inner product $\langle f, g\rangle=\sum_{i} \alpha_{i} \overline{\beta_{i}}$.
(c) Consider a data sequence $f[n](n=0,1, \ldots, 15)$ having Fourier coefficients $F[k](k=0,1, \ldots, 15)$. Using the $16^{\text {th }}$ roots of unity labelled around the unit circle as powers of w^{1}, the primitive $16^{\text {th }}$ root of unity, construct a sequence of the w^{i} that could be used to compute $F[3]$ when an inner product is computed between your sequence of w^{i} and the data sequence $f[n]$.

(d) Explain how vector quantisation exploits sparseness to construct very efficient codes. Use the example of encoding a natural language lexicon with a 15 bit coding budget. Contrast the strategy of using codewords for single letters versus using codewords as pointers to a sparse index of combinations of letters.
[4 marks]
(e) A continuous signal $f(t)$ has Fourier transform $F(\omega)$. Explain why computing derivatives of $f(t)$ such as $f^{\prime}(t)$ or $f^{\prime \prime}(t)$ amounts simply to high-pass filtering. For the $n^{\text {th }}$ derivative $f^{(n)}(t)$, what exactly is this filtering operation when expressed in terms of $F(\omega)$? Show how this operation could be used to define derivatives of non-integer order (for example the $1.5^{\text {th }}$ derivative). [4 marks]

