COMPUTER SCIENCE TRIPOS Part II - 2019 - Paper 9

8 Hoare Logic and Model Checking (caw77)

This question is about modelling a program, defined below, consisting of two threads and a single (mathematical) integer variable X, initially set to 0 . Each thread t has its own program counter given by $p c_{t}$, initially set to 0 , which describes the current line for that thread.

```
Thread 1 Thread 2
0: X := X+1 
1: GOTO 0 1: GOTO 0
```

The program is executed by repeatedly carrying out execution steps, where one thread is non-deterministically selected, its entire current line is run, and its program counter is then updated appropriately. This continues until STOP_ALL is executed, which immediately terminates the whole program.
(a) The program state can be described by ($p c_{1}, p c_{2}, \mathrm{X}$, stopped), where $p c_{1}, p c_{2}$, and X are mathematical integers, and stopped is a boolean which is true iff STOP_ALL has been executed. Let S be the set of all such states.
(i) Define S_{0}, the set of initial states of the program, such that $S_{0} \subseteq S$. [1 mark]
(ii) Define a transition relation $R \subseteq S \times S$ describing the program's execution. [2 marks]
(iii) Define a labelling function L that labels all states where the program has terminated with the atomic property term.
[2 marks]
(b) Explain why, taking the definitions from (a), the model $M_{\mathbf{a}}=\left(S, S_{0}, R, L\right)$ is not a (finite) Kripke structure.
[2 marks]
(c) Draw the finite state automaton for a model $M_{\mathbf{b}}$ which is a Kripke structure, such that $M_{\mathbf{a}}$ and $M_{\mathbf{b}}$ are bisimilar. Justify your answer briefly.
[Note: A full formal proof of bisimilarity is not required.]
(d) (i) Give an LTL formula ϕ such that the judgement $M_{\mathbf{b}} \vDash \phi$ corresponds to the statement "every execution of the program will eventually terminate".
(ii) Either prove that $M_{\mathbf{b}} \vDash \phi$ holds, or describe a counter-example trace.
[2 marks]
(e) Consider the CTL formula $\psi=\mathbf{A G}(\mathbf{E F}$ term). Determine whether this is equivalent to your definition of ϕ from Part (d). ϕ and ψ are equivalent iff, for all Kripke structures M, $(M \vDash \phi)$ iff $(M \vDash \psi)$. Justify your answer. [4 marks]

