COMPUTER SCIENCE TRIPOS Part II - 2019 - Paper 9

13 Quantum Computing (ad260)

A Boolean formula ϕ with n variables in it can be seen as defining a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, and we say that ϕ is satisfiable if there is some $x \in\{0,1\}^{n}$ such that $f(x)=1$.
(a) Explain how f can be suitably represented as a unitary operation U_{f} on a complex space of dimension 2^{n+1}.
(b) Suppose that we are given a blackbox implementing U_{f}. Describe how this would be used to form the Grover iterate which can be repeated to find a value x such that $f(x)=1$.
(c) If there is exactly one value x such that $f(x)=1$, how many iterations of the Grover iterate would you use to find this value? What is the probability of finding it?
(d) If there are M distinct values such that $f(x)=1$, how many iterations of the Grover iterate would you use to find one of these values? What is the probability of finding one of them?
(e) If you are able to turn an arbitrary formula ϕ into an implementation of the corresponding unitary operator U_{f}, how would you use this to give an algorithm for determining whether ϕ is satisfiable or not? Give an estimate of the running time of your algorithm in terms of n.

