COMPUTER SCIENCE TRIPOS Part II – 2019 – Paper 8

9 Machine Learning and Bayesian Inference (sbh11)

In designing a system to perform linear regression with noisy data, you feel that the noise is not modelled well by the usual normal density, and wish instead to use the *Cauchy density*

$$p(x) = \frac{1}{\beta \pi} \left(\frac{\beta^2}{(x-\alpha)^2 + \beta^2} \right)$$

having parameters α and β .

- (a) Denote the weights of your model by the vector \mathbf{w} . Given a set \mathbf{s} of m examples, each consisting of a d-dimensional vector \mathbf{x} and corresponding label y, find an expression for the *likelihood* $p(\mathbf{y}|\mathbf{w})$ where $\mathbf{y}^T = (y_1, \ldots, y_m)$. State any assumptions you make. [6 marks]
- (b) In addition to the unusual noise density, you have some knowledge of the problem at hand suggesting that some of the parameters in \mathbf{w} are likely to be close to known values, whereas the others have no such constraint. Suggest a suitable *prior density* $p(\mathbf{w})$ that could be used to model this. You should assume that the weights are independent for the purposes of designing a prior, and you may use the fact that the normal density is

$$p(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$
[5 marks]

- (c) Using your answers to parts (a) and (b) derive a maximum a posteriori (MAP) learning algorithm for the problem. Should your algorithm require derivatives you may state them without working them out in full.
 [6 marks]
- (d) Suggest a way in which any parameters other than w might be either given an effective value or removed from consideration. Give a single advantage and a single disadvantage of the method you suggest.
 [3 marks]