COMPUTER SCIENCE TRIPOS Part II – 2019 – Paper 8

7 Hoare Logic and Model Checking (jp622)

Consider a programming language that consists of commands C composed from assignments X := E (where X is a program variable, and E is an arithmetic expression), heap allocation $X := \texttt{alloc}(E_1, \ldots, E_n)$, heap assignment $[E_1] := E_2$, heap dereference X := [E], disposal of heap locations dispose(E), the no-op skip, sequencing $C_1; C_2$, conditionals if B then C_1 else C_2 (where B is a boolean expression), and loops while B do C. null is 0

- (a) Explain informally what it means for a separation logic partial correctness triple $\{P\} \ C \ \{Q\}$ to be valid. [3 marks]
- (b) Explain informally what it means in terms of the executions of C for the separation logic partial correctness triple $\{\top\} C \{\bot\}$ to be valid. [2 marks]
- (c) Recall the list representation predicate *list*:

$$list(t, []) = (t = null)$$
 $list(t, h :: \alpha) = \exists y. ((t \mapsto h) * ((t+1) \mapsto y) * list(y, \alpha))$

We write [] for the empty mathematical list; $h :: \alpha$ for the mathematical list the head of which is h, and the tail of which is α ; $\alpha + \beta$ for the concatenation of mathematical lists α and β ; $\alpha[i]$ for the *i*-th element of the list α , starting at 0; and $[k, \ldots, n]$ for the ascending list of integers from k to n, including k and n. Give a proof outline, including a loop invariant, for the following triple:

$$\begin{aligned} \{N &= n \land N \ge 0\} \\ X &:= \texttt{null}; \texttt{while } N > 0 \texttt{ do } (X := \texttt{alloc}(N, X); N := N - 1) \\ \{list(X, [1, \dots, n])\} \end{aligned}$$
 [4 marks]

(d) Also recall the partial list representation predicate *plist*:

$$plist(t, ||, u) = (t = u)$$

$$plist(t, h :: \alpha, u) = \exists y. ((t \mapsto h) * ((t+1) \mapsto y) * plist(y, \alpha, u))$$

Give a loop invariant for the following list sum triple: $\{list(X, \alpha)\}$ $Y := X; N := 0; \text{while } Y \neq \text{null do } (M := [Y]; N := N + M; Y := [Y + 1])$ $\{list(X, \alpha) \land N = \sum_{i=0}^{length(\alpha)-1} \alpha[i]\}$ [4 marks]

(e) Give a loop invariant for the following list concatenation triple: $\{list(X, \alpha) * list(Y, \beta)\}$ if X = null then Z := Y else $\begin{pmatrix} Z := X; U := Z; V := [Z+1]; \\ \text{while } V \neq \text{null do } (U := V; V := [V+1]); \\ [U+1] := Y \\ \{list(Z, \alpha ++ \beta)\} \end{cases}$ [5 marks]

(f) Describe precisely a stack and a heap that satisfy list(X, [1, ..., 3]). [2 marks]