COMPUTER SCIENCE TRIPOS Part IB – 2019 – Paper 6

6 Computation Theory (amp12)

- (a) (i) Give an inductive definition of the relation $M =_{\beta} N$ of β -conversion between λ -terms M and N. [3 marks]
 - (*ii*) What is meant by a term in β -normal form? [1 mark]
 - (*iii*) If M and N are in β -normal form, explain why $M =_{\beta} N$ implies that M and N are α -equivalent λ -terms. [2 marks]

(You need not define notons such as α -equivalence and capture-avoiding substitution.)

- (b) Show that there are λ -terms True, False and If satisfying If True $M N =_{\beta} M$ and If False $M N =_{\beta} N$ for all λ -terms M and N and with True \neq_{β} False. [4 marks]
- (c) Define Curry's fixed point combinator Y and prove its fixed point property.

[3 marks]

(d) Consider the following two properties of a λ -term M:

(I) there exist λ -terms A and B with $MA =_{\beta}$ True and $MB =_{\beta}$ False

(II) for all λ -terms N, either $M N =_{\beta}$ True or $M N =_{\beta}$ False.

Prove that M cannot have both properties (I) and (II). [Hint: if M has property (I), consider $M(Y(\lambda x. \text{ If } (M x) B A)).]$ [4 marks]

(e) Deduce that there is no λ -term E such that for all λ -terms M and N

$$E M N =_{\beta} \begin{cases} \mathsf{True} & \text{if } M =_{\beta} N \\ \mathsf{False} & \text{otherwise} \end{cases}$$

[3 marks]