COMPUTER SCIENCE TRIPOS Part IB - 2019 - Paper 6

3 Complexity Theory (ad260)

A Boolean formula ϕ is said to be satisfiable if there is an assignment $\sigma: V \rightarrow$ \{true, false\} of values to the variables of ϕ that makes it true.

A quantified Boolean formula θ is an expression that is (i) either a Boolean formula; or (ii) $\exists X \phi$ where ϕ is a quantified Boolean formula and X is variable; or (iii) $\forall X \phi$ where ϕ is a quantified Boolean formula and X is variable.

We say that a quantified Boolean formula θ is satisfied by an assignment $\sigma: V \rightarrow$ \{true, false\} if either

- θ is a Boolean formula that is made true by σ; or
- θ is $\exists X \phi$ and either $\sigma[X /$ true $]$ or $\sigma[X /$ false $]$ make ϕ true; or
- θ is $\forall X \phi$ and both $\sigma[X /$ true $]$ and $\sigma[X /$ false $]$ make ϕ true.

Here, $\sigma[X / v]$ denotes the assignment that is the same as σ for all variables apart from X, and it maps X to the truth value v.

We write QBF for the decision problem of determining whether a given quantified Boolean formula is satisfiable. In answering the questions below, you may assume the NP-completeness of any standard problem, as long as you state your assumptions clearly.
(a) Show that QBF is NP-hard.
(b) Show that QBF is co-NP-hard.
(c) Show that QBF is in PSpace.
(d) Is QBF NP-complete? Why or why not?

