COMPUTER SCIENCE TRIPOS Part IB - 2019 - Paper 4

9 Semantics of Programming Languages (pes20)

Consider the following pure functional language, in which n ranges over the mathematical integers.

$$
\begin{aligned}
T::= & \operatorname{int} 1|\operatorname{int} 8| \operatorname{int} 16|\operatorname{uint} 1| \operatorname{uint} 8|\operatorname{uint} 16| T \rightarrow T^{\prime}\left|T * T^{\prime}\right| T+T^{\prime} \\
e:= & n\left|e+_{T} e^{\prime}\right| x|\mathbf{f n} x: T \Rightarrow e| e e^{\prime}\left|\left(e, e^{\prime}\right)\right| \# 1 e|\# 2 e| \operatorname{inl}_{T} e \mid \operatorname{inr}_{T} e \\
& \mid \operatorname{case} e \text { of } \operatorname{inl}\left(x_{1}: T_{1}\right) \Rightarrow e_{1} \mid \operatorname{inr}\left(x_{2}: T_{2}\right) \Rightarrow e_{2}
\end{aligned}
$$

Its operational semantics is defined as a relation $e \longrightarrow e^{\prime}$ with the standard rules for a pure call-by-value left-to-right functional language, except with the following rules for addition of values. As usual, the expression $n+{ }_{T} n^{\prime}$ is stuck if one of these does not apply.

$$
\frac{n^{\prime \prime \prime}=n^{\prime \prime} \bmod 2^{N}}{n+_{\text {uint } N} n^{\prime} \longrightarrow n^{\prime \prime \prime}} \text { PLUS_UINT }
$$

(a) Define a subtype relation $T<: T^{\prime}$ and type relation $\Gamma \vdash e: T$ for this syntax and operational semantics that will permit flexible use of integers in the appropriate ranges. You can omit the standard type relation rules for the expressions $\left(e, e^{\prime}\right)$, $\# 1 e, \# 2 e, \operatorname{inl}_{T} e, \operatorname{inr}_{T} e$, and case.
[14 marks]
(b) Explain three main aspects of your definitions, with reference to the programming idioms they permit and the runtime errors they exclude, with examples.
[6 marks]

