COMPUTER SCIENCE TRIPOS Part IA – 2019 – Paper 1

5 Numerical Analysis (abr28)

- (a) Let f be a single variable real function that has at least one root α , and that admits a Taylor expansion everywhere.
 - (i) Starting from the truncated form of the Taylor expansion of f(x) about x_n , derive the recursive expression for the Newton-Raphson (NR) estimate x_n of the root at the (n + 1)th step. [1 mark]
 - (*ii*) Consider the general Taylor expansion of $f(\alpha)$ about x_n . Using big O notation for an appropriate Taylor remainder and denoting the NR error at the *n*th step by e_n , prove that the NR method has quadratic convergence rate. That is, show that e_{n+1} is proportional to e_n^2 plus a bounded remainder. State the required conditions for this to hold, paying attention to the interval spanned during convergence. [6 marks]
 - (*iii*) Briefly explain two of the known problems of the NR method from an implementation standpoint or otherwise. [2 marks]
- (b) Let $f(x) = x^2 1$. Suppose we wish to find the positive root of f using the Newton-Raphson (NR) method starting from an initial guess $x_0 \ge 1$.
 - (i) Show that if $x_0 \ge 1$ then $x_n \ge 1$ for all $n \ge 1$. [3 marks]
 - (*ii*) Thus find an upper bound for NR's x_{n+1} estimate in terms of x_n and in turn find an upper bound for x_n in terms of x_0 . [5 marks]
 - (*iii*) Using the above, estimate the number of NR iterations to obtain the root with accuracy 10^{-9} for a wild initial guess $x_0 = 10^9$. [*Hint:* You may wish to approximate 10^3 by 2^{10} .] [3 marks]