COMPUTER SCIENCE TRIPOS Part II - 2018 - Paper 9

4 Computer Vision (JGD)

(a) Consider an object's surface reflectance map $\phi(i, e, g)$ specifying the amount of incident light reflected towards a camera from each point on the surface, where the angle of the illuminant (a point source) relative to the local surface normal N is i, the angle relative to N of a ray of light re-emitted from the surface is e, and the angle between the emitted ray and the illuminant is g.
(i) For what kind of surface is the reflectance map simply $\phi(i, e, g)=\cos (i)$? Name this type of surface and describe its key properties. [4 marks]
(ii) For what kind of surface does the reflectance map simplify to $\phi(i, e, g)=1$ if $i=e$ and both i and e are coplanar with the surface normal N, and $\phi(i, e, g)=0$ otherwise? Name this type of surface and describe its key properties.
[4 marks]
(iii) For what kind of surface does the reflectance map depend only on the ratio of the cosines of the angles of incidence and emission, $\cos (i) / \cos (e)$, but not upon their relative angle g nor upon the surface normal N ? Give an example of such an object, and explain the consequence of this special reflectance map for the object's appearance.
[4 marks]
(b) The binary pixel array on the left below was convolved with what operator ? to produce the result on the right? Specify the operator by numbers within an array, and identify what task this convolution accomplishes in computer vision.

0	0	0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0	0	0									
0	0	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0									
0	0	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0									
0	0	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0									
0	0	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0									
0	0	0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0	0	0	$* \bullet ? \rightarrow$	0	0	0	0	0	0	0	0
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:											
0	0	0	0	0	0	0	0											
0	$\mathbf{- 1}$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{- 1}$	0											
0	$\mathbf{- 1}$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{- 1}$	0											
0	$\mathbf{- 1}$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{- 1}$	0											
0	$\mathbf{- 1}$	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{- 1}$	0											
0	0	0	0	0	0	0	0											
0	0	0	0	0	0	0	0											

(c) When visually inferring a 3D representation of a face, it is useful to extract separately both a shape model, and a texture model. Explain the purposes of these steps, their use in morphable models for pose-invariant face recognition, and how the shape and texture models are extracted and later re-combined.

