COMPUTER SCIENCE TRIPOS Part II – 2018 – Paper 9

4 Computer Vision (JGD)

- (a) Consider an object's surface reflectance map $\phi(i, e, g)$ specifying the amount of incident light reflected towards a camera from each point on the surface, where the angle of the illuminant (a point source) relative to the local surface normal N is i, the angle relative to N of a ray of light re-emitted from the surface is e, and the angle between the emitted ray and the illuminant is g.
 - (i) For what kind of surface is the reflectance map simply $\phi(i, e, g) = \cos(i)$? Name this type of surface and describe its key properties. [4 marks]
 - (*ii*) For what kind of surface does the reflectance map simplify to $\phi(i, e, g) = 1$ if i = e and both i and e are coplanar with the surface normal N, and $\phi(i, e, g) = 0$ otherwise? Name this type of surface and describe its key properties. [4 marks]
 - (*iii*) For what kind of surface does the reflectance map depend only on the ratio of the cosines of the angles of incidence and emission, $\cos(i)/\cos(e)$, but not upon their relative angle g nor upon the surface normal N? Give an example of such an object, and explain the consequence of this special reflectance map for the object's appearance. [4 marks]
- (b) The binary pixel array on the left below was convolved with what operator ? to produce the result on the right? Specify the operator by numbers within an array, and identify what task this convolution accomplishes in computer vision.

0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	0	0	0		0	-1	1	0	0	1	-1	0
0	0	0	1	1	1	1	0	0	0		0	-1	1	0	0	1	-1	0
0	0	0	1	1	1	1	0	0	0	$*$? \Rightarrow	0	-1	1	0	0	1	-1	0
0	0 0	0	1 1	1	1 1	1 1	0	0	0	* [?] ⇒	0	-1 -1	1 1	0	0	1 1	-1 -1	0
0 0 0	0 0 0	0 0 0	1 1 0	1 1 0	1 1 0	1 1 0	0 0 0	0 0 0	0 0 0	* ? ⇒	0 0 0	-1 -1 0	1 1 0	0 0 0	0 0 0	1 1 0	-1 -1 0	0 0 0

[4 marks]

(c) When visually inferring a 3D representation of a face, it is useful to extract separately both a shape model, and a texture model. Explain the purposes of these steps, their use in morphable models for pose-invariant face recognition, and how the shape and texture models are extracted and later re-combined.

[4 marks]