COMPUTER SCIENCE TRIPOS Part II - 2018 - Paper 9

1 Advanced Algorithms (TMS)

(a) Given an algorithm for the SET-COVER problem as a black box, how could you use this to solve the unweighted VERTEX-COVER problem?
[4 marks]
(b) Following the approach in Part (a), which approximation ratio for the VERTEXCOVER problem do you achieve by applying the greedy algorithm for the SET-COVER problem? What happens if every vertex in the graph has at most 4 neighbours?
(c) Consider the following greedy algorithm for the unweighted VERTEX-COVER problem:

Compute a directed Depth-First-Search tree (DFS-tree) from every connected component in the graph, and output all nodes which are not leaves in the DFS-tree (a vertex is a leaf if it has no outgoing edges in the DFS-tree).
(i) What is the running time of this algorithm?
(ii) Why is the returned solution a valid vertex cover?
(iii) Derive a bound, as good as possible, on the approximation ratio of this algorithm.
Hint: You may use the fact that in any undirected graph $G=(V, E)$, $\sum_{u \in V} \operatorname{deg}(u)=2|E|$, where $\operatorname{deg}(u)$ denotes the number of neighbours of u. [4 marks]

