COMPUTER SCIENCE TRIPOS Part II - 2018 - Paper 8

8 Machine Learning and Bayesian Inference (SBH)

Evil Robot has decided to become a gambling cheat. He has a biased coin with $\operatorname{Pr}($ head $)=p$ and two dice. The first die is biased with $\operatorname{Pr}(n)=p_{n}$ for the nth outcome with $n \in\{1,2,3,4,5,6\}$. The second die is also biased, and has different numbers: its distribution is $\operatorname{Pr}(n)=q_{n}$ with $n \in\{4,5,6,7,8,9\}$.

Evil Robot flips the coin. If he gets a head then he rolls the first die, otherwise he rolls the second. He then tells you the outcome. You see only the number obtained and nothing else. He does this m times, so you observe a sequence of m numbers in the range 1 to 9 . Your aim is to estimate p and the distributions of each die, given the m numbers. In the following, \mathbf{n} is the vector of m observed numbers $\left(\begin{array}{lll}n_{1} & \cdots & n_{m}\end{array}\right)^{T}$, θ is the set of parameters $\left\{p, p_{1}, \ldots, p_{6}, q_{4}, \ldots, q_{9}\right\}$ and we define $q=1-p$.
(a) Write down an expression for the distribution $\operatorname{Pr}(n \mid \theta)$ where $n \in\{1, \ldots, 9\}$.
[2 marks]
(b) Define the variable

$$
z_{i}= \begin{cases}1 & \text { if } n_{i} \text { was obtained by rolling die } 1 \\ 0 & \text { otherwise }\end{cases}
$$

and let \mathbf{z} denote the corresponding vector with m values. Write down an expression for $\log \operatorname{Pr}(\mathbf{n}, \mathbf{z} \mid \theta)$.
(c) Describe the EM algorithm for maximizing likelihood in a problem involving latent variables.
(d) Show that, with the distribution $\operatorname{Pr}(\mathbf{z} \mid \mathbf{n}, \theta)$,

$$
E\left(z_{i}\right)= \begin{cases}1 & \text { if } n_{i} \in\{1,2,3\} \\ 0 & \text { if } n_{i} \in\{7,8,9\} \\ \frac{p p_{n_{i}}}{p p_{n_{i}}+q q_{n_{i}}} & \text { otherwise. }\end{cases}
$$

(e) Define $\gamma_{i}=E\left(z_{i}\right)$ as in Part (d). By applying the EM algorithm to this problem, show that you can estimate the parameters in θ using the following updates

$$
\begin{aligned}
p & =\frac{\gamma}{m} \\
p_{n} & =\frac{1}{\gamma} \sum_{\left\{i \mid n=n_{i}\right\}} \gamma_{i} \\
q_{n} & =\frac{1}{m-\gamma} \sum_{\left\{i \mid n=n_{i}\right\}}\left(1-\gamma_{i}\right)
\end{aligned}
$$

where $\gamma=\sum_{i=1}^{m} \gamma_{i}$.

