COMPUTER SCIENCE TRIPOS Part IB - 2018 - Paper 7

4 Further Graphics (PAB)

(a) Here are two methods for implementing a cube using signed distance fields:

```
float methodOne(vec3 p) {
    return max(max(abs(p.x), abs(p.y)), abs(p.z)) - 1;
}
float methodTwo(vec3 p) {
    vec3 d = abs(p) - vec3(1);
    return min(max(d.x, max(d.y, d.z)), 0.0)
            + length(max(d, 0.0));
}
```

One is preferable to the other for producing better images faster. Which one, and why?
(b) Complete the code below to implement the signed distance field function for a finite line segment with hemispherical end-caps (Figure 1) of arbitrary start point, end point, and radius.
float lineSegment(vec3 p, vec3 start, vec3 end, float radius) \{ // [YOUR CODE HERE]
\}
float getSdf(vec3 p) \{ return lineSegment (
p , vec3(-PI, 0, 0), vec3(PI, 0, 0), 0.5);
\}
(c) Implement a version of getSdf() that doubles the height of your line segment and translates it by -0.5 along the Z axis, to be centred at $(0,0,-0.5)$ (Figure $2)$.
(d) Implement a version of getSdf() that warps the original line segment into a sine wave $\sin (X)$ (Figure 3).
(e) Modify getSdf () to render the sine wave model subtracted from the taller model (Figure 4).
[4 marks]

Figure 1

Figure 3

Figure 2

Figure 4

Figure 1: A finite cylinder of radius 0.5 centred at $(0,0,0)$ with hemispherical end-caps, starting at $(-\pi, 0,0)$ and ending at $(\pi, 0,0)$.
Figure 2: The original finite cylinder has been enlarged to double its height on the Y axis and has been translated in Z so that it is now centred at $(0,0,-0.5)$. Figure 3: The original finite cylinder has been warped with a sine wave. Its centre remains at $(0,0,0)$ and its endpoints remain centred around $(+/-\pi, 0,0)$, but in between its central axis falls to $Y=-1$ and rises to $Y=1$.
Figure 4: The sine wave has been subtracted from the double-height cylinder.
(Note: Ground plane shown at $Y=-1$ for illustration purposes only)

