COMPUTER SCIENCE TRIPOS Part Ib - 2018 - Paper 6

5 Computation Theory (AD)

(a) Give a precise definition of the class of partial recursive functions. [3 marks]
(b) We can associate with each natural number $i \in \mathbb{N}$ the partial recursive function $f_{i}: \mathbb{N} \rightarrow \mathbb{N}$ computed by the register machine coded by the number i. Explain why
(i) for every partial recursive function $f: \mathbb{N} \rightarrow \mathbb{N}$, there is an i such that $f=f_{i}$; and
(ii) the partial function $g: \mathbb{N} \times \mathbb{N} \rightharpoonup \mathbb{N}$ given by $g(i, n)=f_{i}(n)$ is computable.
(c) Show that the total function $T: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ given by:

$$
T(i, n)= \begin{cases}1 & \text { if } f_{i}(n) \downarrow \\ 0 & \text { otherwise }\end{cases}
$$

is uncomputable. Here f_{i} refers to the partial function associated with $i \in \mathbb{N}$ as in (b).
[9 marks]

