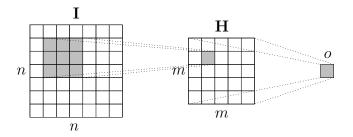

COMPUTER SCIENCE TRIPOS Part IB - 2018 - Paper 6

2 Artificial Intelligence (SBH)

Evil Robot is updating his visual system. He has a single camera that produces an $n \times n$ matrix I of pixel values. His visual system is arranged as follows:


The input I is reduced to an $m \times m$ matrix $\mathbf{H}(\mathbf{I})$. The elements $H_{i,j}$ are

$$H_{i,j}(\mathbf{I}) = \sigma \left(\sum_{k=1}^{n} \sum_{l=1}^{n} w_{k,l}^{(i,j)} I_{k,l} + b^{(i,j)} \right)$$

where σ is an appropriate function, and $w_{k,l}^{(i,j)}$ and $b^{(i,j)}$ are the weights and bias for element (i,j). A single output $o(\mathbf{H})$ is computed as

$$o(\mathbf{H}) = \sigma \left(\sum_{k=1}^{m} \sum_{l=1}^{m} w_{k,l} H_{k,l} + b \right).$$

- (a) If Evil Robot has a training example (\mathbf{I}', y') and is using an error $E(\mathbf{w})$ where \mathbf{w} is a vector of all weights and biases available, derive an algorithm for computing $\frac{\partial E}{\partial \mathbf{w}}$ for the example. [12 marks]
- (b) A modification to the system works as follows:

The mapping from **I** to **H** is replaced by an $n' \times n'$ convolution kernel. This has a single set of parameters $v_{k,l}$ and c used to compute every element of **H** as the weighted sum of a patch of elements in **I**

$$H_{i,j}(\mathbf{I}) = \sigma \left(\sum_{k=1}^{n'} \sum_{l=1}^{n'} v_{k,l} I_{i+k-1,j+l-1} + c \right).$$

Provide a detailed description of how the algorithm derived in Part (a) must be updated to take account of this modification. [8 marks]

1