
9

COMPUTER SCIENCE TRIPOS Part IB – 2018 – Paper 4

Semantics of Programming Languages (PMS)

Consider the following language with higher-order functions and mutable global
references. Here l ranges over mutable location names, that can hold arbitrary values
v , n ranges over natural numbers, and x ranges over immutable variable names.

e ::= n | l | x | fn x : T ⇒ e | e e ′ | e := e ′ | !e

v ::= n | l | fn x : T ⇒ e

Suppose it has a standard left-to-right call-by-value operational semantics. You need
not state this semantics.

The definition of Γ `eff e : T below, where an effect eff is a subset of {R,W}, is a
flawed attempt to statically compute a sound approximation of the possible dynamic
side-effects of expressions. Such an analysis is sound if eff contains R and/or W
whenever there is any execution of 〈e, s〉, for any store s that is well-typed with
respect to Γ, that involves (respectively) reading and/or writing the store.

Function types are annotated with the latent effects that may occur when the function
is applied: T ::= int | T →eff T ′ | T ref

Γ `eff e : T

Γ `{ } n : int
num

l : T ref ∈ Γ

Γ `{R,W} l : T ref
loc

x : T ∈ Γ

Γ `{ } x : T
var

Γ, x : T `eff e : T ′

Γ `{ } fn x : T ⇒ e : T →eff T ′ fn

Γ `eff e : T1 →eff ′′ T2

Γ `eff ′ e ′ : T1

Γ `eff ∪ eff ′ e e ′ : T2

app

Γ `eff e : T ref
Γ `eff ′ e ′ : T

Γ `eff ∪ eff ′ ∪{W} e := e ′ : T
assign

Γ `eff e : T ref

Γ `{R}!e : T
deref

(a) There are three flaws in the above rules, which make them either not sound or
an unnecessarily coarse approximation. Explain each flaw, giving a corrected
rule for each and an example that shows the problem (assuming the other flaws
are fixed). [15 marks]

(b) In the system above, functions have to be applied to arguments of exactly the
expected type. Define a subtype relation T <: T ′ and subsumption rule that
would let function arguments be used even if they have fewer (latent) effects
than those anticipated by the function. [5 marks]

1

