COMPUTER SCIENCE TRIPOS Part IA - 2018 - Paper 2

9 Discrete Mathematics (MPF)

(a) Define $F_{0}=0, F_{1}=1$ and for $n \in \mathbb{N}, F_{n+2}=F_{n+1}+F_{n}$.

For positive integers a and b, prove that

$$
\forall n \in \mathbb{N} \cdot \operatorname{gcd}\left(a F_{n+3}+b F_{n+2}, a F_{n+1}+b F_{n}\right)=\operatorname{gcd}(a, b)
$$

(b) Let U be a set and let $\mathcal{P}(U)$ denote its powerset.

For $\mathcal{F} \subseteq \mathcal{P}(U)$, define $\mathcal{G} \subseteq \mathcal{P}(U)$ as $\{X \subseteq U \mid \forall S \in \mathcal{F} . S \subseteq X\}$.
Prove that $\bigcup \mathcal{F}=\bigcap \mathcal{G}$.
(c) For $i=0,1$, let $M_{i}=\left(Q_{i}, \Sigma, \delta_{i}, s_{i}, F_{i}\right)$ be deterministic finite automata, where $\delta_{i}: Q_{i} \times \Sigma \rightarrow Q_{i}$ are the next-state functions.

A relation $R \subseteq Q_{0} \times Q_{1}$ is said to be a simulation whenever

$$
\begin{aligned}
& \forall q \in Q_{0}, q^{\prime} \in Q_{1} . \\
& \quad q R q^{\prime} \Longrightarrow\left[\left(q \in F_{0} \Rightarrow q^{\prime} \in F_{1}\right) \wedge \forall a \in \Sigma . \delta_{0}(q, a) R \delta_{1}\left(q^{\prime}, a\right)\right]
\end{aligned}
$$

(i) For $i=0,1$, let $\delta_{i}^{\#}: Q_{i} \times \Sigma^{*} \rightarrow Q_{i}$ be defined, for $q \in Q_{i}, a \in \Sigma$ and $w \in \Sigma^{*}$, by

$$
\begin{aligned}
\delta_{i}^{\#}(q, \varepsilon) & =q \\
\delta_{i}^{\#}(q, a w) & =\delta_{i}^{\#}\left(\delta_{i}(q, a), w\right)
\end{aligned}
$$

For a simulation $R \subseteq Q_{0} \times Q_{1}$, prove that

$$
\forall w \in \Sigma^{*} . \forall q \in Q_{0}, q^{\prime} \in Q_{1} . q R q^{\prime} \Longrightarrow \delta_{0}^{\#}(q, w) R \delta_{1}^{\#}\left(q^{\prime}, w\right) \quad[7 \text { marks }]
$$

(ii) For $i=0,1$, define $L\left(M_{i}\right)=\left\{w \in \Sigma^{*} \mid \delta_{i}^{\#}\left(s_{i}, w\right) \in F_{i}\right\}$.

Prove that if there exists a simulation $R \subseteq Q_{0} \times Q_{1}$ such that $s_{0} R s_{1}$ then $L\left(M_{0}\right) \subseteq L\left(M_{1}\right)$.

