COMPUTER SCIENCE TRIPOS Part II – 2018 – Paper 7

1 Advanced Algorithms (TMS)

- (a) What are the three possible cases for the solution of a linear program? For each of them, give an example of a linear program in standard form exhibiting this case.
 [6 marks]
- (b) What is the set of optimal solutions for the following linear program?

Minimize
$$-x_1 - x_2$$

 $-x_2 \ge -3$
 $2x_1 + x_2 \le 8$
 $x_1, x_2 \ge 0$

[6 marks]

(c) For a given linear program \mathbf{LP}_1

Maximize
$$\sum_{j=1}^{n} c_j x_j$$
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \qquad (1 \le i \le m)$$
$$x_j \ge 0 \qquad (1 \le j \le n),$$

consider a new linear program \mathbf{LP}_2 :

Minimize
$$\sum_{i=1}^{m} b_i y_i$$
$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j \qquad (1 \le j \le n)$$
$$y_i \ge 0 \qquad (1 \le i \le m).$$

- (i) Prove that if x is a feasible solution for \mathbf{LP}_1 and y is a feasible solution for \mathbf{LP}_2 , then $c^T x \leq b^T y$. [6 marks]
- (*ii*) Using your answer in Part (c)(i), what can we conclude about \mathbf{LP}_2 if we know that \mathbf{LP}_1 is unbounded? [2 marks]