COMPUTER SCIENCE TRIPOS Part IA - 2018 - Paper 1

5 Numerical Methods (DJG)

(a) Consider implementing the natural logarithm function $\ln (t)$ for floating-point numbers using the McLaurin series:

$$
\begin{aligned}
\ln (1+x) & =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n} \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
\end{aligned}
$$

(i) List all special behaviours the natural logarithm function should have in different parts of its range and when t takes the special values NaN and $\pm \infty$.
(ii) The function must accept a broad range of numerical values but the series only converges when the absolute value of x is less than one, $|x|<1$. Describe a range-reduction procedure that pre-processes the argument and post-processes the result so that the series always acts on small values of x.
(iii) State the two precision requirements normally expected for mathematical libraries. Considering the worst-case value(s) of x after range reduction, approximately how many terms are needed to meet one of these requirements for a single-precision implementation? Do you expect the other requirement to be met?
(b) The Trapezoidal Rule for numerical definite integration returns the area of the trapezium-shaped strips formed by each pair of adjacent points. The area under each such strip is:

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{2}[f(a)+f(b)]
$$

(i) A program computes the area between two points A and B using N strips of width h. What should be taken into account when choosing h ? Suggest a good value for h.
(ii) Assuming the best choice for h, what characteristics of $f()$ will affect the accuracy achieved?

