COMPUTER SCIENCE TRIPOS Part IA - 2018 - Paper 1

10 Algorithms (RKH-DJW)

(a) Let dijkstra_path (g, a, b) be an implementation of Dijkstra's shortest path algorithm that returns the shortest path from node a to node b in a graph g. Prove that the implementation can safely terminate when it first encounters node b.
(b) Consider all paths in a graph from a to b, ordered from shortest to longest. Assuming $p=$ dijkstra_path (g, a, b) is the first path in this collection, an algorithm to find the second path considers deviations from the vertices of p. An algorithm to do this is given below.

```
function second_path(Graph g, Vertex a, Vertex b):
    p = dijkstra_path(g,a,b)
    best_so_far = []
    for i = 1 to len(p)-1:
        t = p[:i] # First i elements of p
        c = g.get_edge_weight(p[i], p[i+1])
        g.set_edge_weight(p[i], p[i+1], infinity)
        t.append(dijkstra_path(g,p[i],b))
        if (len(best_so_far) == 0 or
            cost(t) < cost(best_so_far)):
            best_so_far = t
        g.set_edge_weight(p[i], p[i+1], c)
    return best_so_far
```

(i) Show the steps of this algorithm on the following graph, from A to B .

[5 marks]
(ii) What is the asymptotic complexity of this algorithm in terms of the number of edges, E, and the number of vertices, V ? Assume the implementation of Dijkstra's algorithm uses a priority queue based on a Fibonacci heap.
[4 marks]
(iii) Show how to adapt this algorithm to find the top- k shortest paths in the collection. State the complexity of the adapted algorithm.

