COMPUTER SCIENCE TRIPOS Part II – 2017 – Paper 9

16 Types (AMP)

- (a) Existential types can be encoded in the Polymorphic Lambda Calculus (PLC) by defining $\exists \alpha (\tau)$ to be $\forall \beta ((\forall \alpha (\tau \rightarrow \beta)) \rightarrow \beta)$, where $\beta \neq \alpha$ and β does not occur free in the PLC type τ . Give the following definitions, justifying the typings in each case:
 - (i) A closed PLC term pack of type $\forall \alpha \ (\tau \to \exists \alpha \ (\tau)).$ [5 marks]
 - (*ii*) A PLC term unpack (M, x, M', τ') satisfying $\Gamma \vdash$ unpack $(M, x, M', \tau') : \tau'$ whenever $\Gamma \vdash M : \exists \alpha (\tau)$ and $\Gamma, x : \tau \vdash M' : \tau'$ hold, where x is not in the domain of Γ and α does not occur free in Γ or τ' . [5 marks]
- (b) If $\Gamma \vdash M : \exists \alpha(\tau), \ \Gamma, x : \tau \vdash M' : \tau' \text{ and } \Gamma \vdash N : \tau[\tau'/\alpha] \text{ hold, where } x \text{ is not in the domain of } \Gamma \text{ and } \alpha \text{ does not occur free in } \Gamma \text{ or } \tau', \text{ to what term does unpack}((pack \tau' N), x, M', \tau') \text{ beta-reduce}?$ [2 marks]
- (c) For each PLC type τ , let $\neg \tau$ be the type $\tau \rightarrow \forall \alpha(\alpha)$. Give, with justification, closed PLC terms of the following types
 - (i) $\forall \alpha (\neg \tau) \rightarrow \neg \exists \alpha (\tau)$ [4 marks]
 - (*ii*) $\exists \alpha (\neg \tau) \rightarrow \neg \forall \alpha (\tau)$ [4 marks]